A Survey on Methods of Recording Fine-grained Operations on
Integrated Development Environments and their Applications*

Takayuki Omori
Department of Computer Science,
Ritsumeikan University

Shinpei Hayashi
Department of Computer Science,
Tokyo Institute of Technology

Katsuhisa Maruyama
Department of Computer Science,
Ritsumeikan University

Abstract

This paper presents a survey on techniques to record
and utilize developers’ operations on integrated devel-
opment environments (IDEs). Especially, we let tech-
niques treating fine-grained code changes be targets of
this survey for reference in software evolution research.
We created a three-tiered model to represent the rela-
tionships among IDEs, recording techniques, and ap-
plication techniques. This paper also presents common
features of the techniques and their details.

1 Introduction

Software has to keep changing according to changes in
user requirements and the external environment even
after shipment [35, 48]. Software developers and re-
searchers rarely have information about such software
evolution [78]. Thus, not understanding how and why
systems have been changed is a real problem [37].
Moreover, it is said that over 80% of the total cost of
software arises after shipment. Therefore, elucidating
how and why software evolution occurs is important
also from the economic perspective.

*This paper is a translated version of a Japanese reviewed pa-
per [86]. The electronic copy of the original version can be obtained
from http://www.jstage.jst.go.jp/article/jssst/32/1/32_1_60/_pdf.

TNotice for the use of this material: The copy right of this material
is retained by the Japan Society for Software Science and Technology
(JSSST). This material is published on this web site with the agree-
ment of the JSSST. Please be complied with Copyright Law of Japan
if any users wish to reproduce, make derivative work, distribute or
make available to the public any part or whole thereof.

Many studies have targeted time-series changes of
source code from the perspective of program com-
prehension. Most leveraged information derived from
version control systems (VCSs), such as CVS, Sub-
version, and Git. However, several researchers have
pointed out their limitations [42, 53]. To understand
software changes and their underlying intentions, not
only understanding the details of how source code was
changed but also understanding how and when the de-
veloper worked on the software project is helpful [76].
Robbes et al. took the fact that traditional software
evolution studies have been based on VCS data as a
problem and propounded change-based software evolu-
tion [53]. Change-based software evolution treats soft-
ware evolution as history composed of developers’ code
changes recorded on an integrated development envi-
ronment (IDE). Thus, change-based software evolution
allows us to analyze finer-grained evolution that cannot
be done by traditional approaches. Furthermore, the
change history can be used for analyzing developers’
usage of development support tools so that these tools
can be improved based on the analysis.

This paper introduces methods for recording fine-
grained operation history on IDEs and their applica-
tions. Since the paper would be mainly referred in
software evolution studies, it is focused on methods
for recording details of source code changes. We call
a method of this survey’s target an operation-oriented
method hereafter!. Several recording methods have

Ebraert et al. used the term change-oriented [10]. Since this pa-
per targets methods that can treat not only edit operations but also in-
teractions (defined in Section 2), we use the term operation-oriented
for this paper.

been proposed according to a specific IDE and pro-
gramming language. Application methods have also
been proposed based on these recording methods. How-
ever, to the best of our knowledge, there has not been
a comprehensive survey of such methods at this point.
Since the target of this paper spreads into various re-
search fields, such as software maintenance and evolu-
tion, program comprehension, mining software reposi-
tories, automated software engineering, and human as-
pects, the authors believe a survey paper on them would
be particularly valuable.

Operation-oriented methods discussed in this paper
treat the operation history developers conducted on
IDEs and recorded in chronological order. The his-
tory includes all changes performed on source code.
There are several methods for recording developers’ be-
haviors or code changes in narrower time ranges than
VCSs that do not record details of edit operations on
IDEs (e.g., [28, 29]). However, the authors considered
these methods are not suitable for investigating soft-
ware evolution since they have several problems regard-
ing understanding code changes, as mentioned in Sec-
tion 3. Therefore, this paper is not focused on those
methods. However, the authors give a brief overview
of several methods in Section 6 since the authors sur-
veyed them for this study for narrowing down the sur-
vey targets. Survey papers regarding interaction history
without edit operations include the book by Maalej et
al. [36], which surveys methods for recording operation
history for applying recommendation systems and the
paper by Sarma [61], which targets supporting collabo-
rative software development.

We classify operation-oriented methods into two
types: recording and application. A recording method is
used for obtaining and recording operation history de-
rived from an IDE. An application method is used for
supporting software development activities with data
recorded by a recording method and/or for analyzing
the recorded data. An IDE, recording method, and ap-
plication method can be modeled as the three-tiered
model shown in Fig. 1. An application method depends
on the recording method, which generates history data.
A recording method depends on an IDE, i.e., the base
of recording. Hence, we have to determine the prereq-
uisites, such as which IDE we should select, to use an
operation-oriented method. Therefore, this paper shows
tables that show each method and its dependent method
in Sections 4 and 5.

This paper is structured as follows. Section 2 de-
fines the terms used in this paper, and Section 3 presents

‘ Application method ‘

l Utilizing operation history

‘ Recording method ‘

l Obtaining and recording operation history

| IDE |

Figure 1:
methods.

Three-tiered model of operation-oriented

the characteristics of operation-oriented methods, com-
paring traditional methods based on revision history.
Section 4 introduces recording methods, and Section 5
introduces application methods. Section 6 introduces
operation-recording methods outside the scope of this
survey. Section 7 presents discussions about the format
of operation history, leveraging it, and the public use.
Section 8 concludes this paper.

2 Terminology

This section explains terms that appear in this paper.
The authors carefully defined each term not to contra-
dict definitions in other studies, though the definition of
each term depends on each study. The authors found
that several studies have different definitions of a term.
For example, [36] defines the term “interactions’ as in-
cluding “edits”.

An operation is a developer’s activity performed on
an IDE. It can be classified as an edit or interaction.

An edit is an operation that changes source code con-
tent. It involves both a manual change and automatic
one provided as an IDE function. This paper does not
treat a change in file content except for source code.

An interaction is an operation that invokes a function
provided by the IDE, such as automated refactoring,
code completion, opening and closing a file, undo, redo,
build, execution, and launching a debugger. An interac-
tion itself never changes source code content. When
invoking a function with code change (e.g., refactor-
ing), we deem that an edit operation occurs accompa-
nied by the interaction. We consider a method that does
not record source code changes, such as Mylyn [29], as
collecting interactions.

A history is time-series sequence(s) of operations.
An edit history and interaction history respectively

source code changes

(coarse-grained)

|
revision history { : 1 >:
L

fine-grained ‘
operation history |

Figure 2: Revision history and fine-grained operation
history.

mean a history of edits and interactions. They are dif-
ferentiated from a revision history mentioned later. In
case a history involves both edits and interactions and
we do not need to differentiate the operation types, the
history is called an operation history.

A change means a developer’s activity or an execu-
tion of an IDE’s function that causes changing source
code content. It also involves a change in a syntax tree
that accompanies the code change.

A snapshot means a state of source file content at a
particular time.

A revision history represents how source files have
been changed. In many studies, a revision history was
obtained by calculating the differences between two
snapshots. As Fig. 2 shows, differences between two
consecutive snapshots correspond to code change re-
sulting from multiple fine-grained operations (edits).
Therefore, individual edits cannot be obtained using
only a revision history.

In this paper, the word fine-grained means the unit
of operation recording is finer than a revision history so
that every source code change on an IDE can be traced
using a fine-grained operation. However, actual units of
recorded changes have little differences among record-
ing methods. For example, Fluorite [74] mentioned in
Section 4 records developers’ keystrokes. In contrast,
Syde [20] organizes changes in the unit of an abstract
syntax tree (AST) node (syntax element).

3 Characteristics of operation-
oriented methods
This section presents the characteristics of operation-

oriented methods. Since all recording methods in this
paper are aimed at solving problems in using revision

history, most description is based on comparison with
using revision history.
(1) Suitability for understanding code changes

Fluri et al. pointed out that traditional software evo-
lution research depends on revision history preserved
in CVS repositories and code changes are not asso-
ciated with program elements [12]. In their paper,
ChangeDistiller, a tool for restructuring a revision his-
tory as operations, such as insertion and deletion of
AST nodes, was proposed. This is similar to operation-
oriented methods in this paper. However, their method
does not record operations actually performed on an
IDE. Hence, it cannot precisely retrieve the order of per-
formed operations.

Revision history stored in VCS repositories entan-
gles multiple changes into a single one since changes
can be obtained as the difference between revisions.
Hence, we cannot determine the chronological order
(and time) and intentions of individual changes. As
a result, understanding code changes becomes diffi-
cult [32, 53]. Several researchers have pointed out the
difficulty in tracing a program element between revi-
sions, especially when rename and move refactorings
were performed [53, 63, 79].

Negara et al. reported that 37% of code changes do
not reach VCSs, that is, they are shadowed (overwrit-
ten); thus, a part of the history is lost [42]. Herzig
et al. investigated five Java open source projects and
found that at least 7-20% of bug fixes are tangled
changes [26]. By using operation history, such in-
formation can be precisely obtained. Maruyama et
al. proposed a method for extracting an operation his-
tory slice corresponding to changes in individual meth-
ods or classes, which are generally tangled with other
changes [38].

(2) Ability of restoring past source code

We can easily proceed and rewind source code states
by using operation history [53]. Text editors can gener-
ally restore past states of source code by its undo func-
tion. However, source code states prior to the last close
of the editor cannot be restored because the undo history
is discarded. Moreover, the undo function can rewind
only the most recent code change at once [72]. On the
other hand, a VCS repository keeps only source code
committed by developers. Hence, we cannot restore
other source code states [72], whereas we can restore
any source code state with operation history.

(3) Availability for investigating tool usages

Several operation-oriented methods can record how

developers used IDEs. Vakilian et al. pointed out that

existing information, such as revision history, is insuf-
ficient for investigating the use of automated refactor-
ing functions provided by IDEs [71]. For example, by
using only revision history, we cannot precisely know
whether a refactoring was performed manually or auto-
matically.
(4) Dependency on programming languages

In general, a VCS manages source code in a
language-free format, such as files. Hence, they can en-
sure independency from a programming language [53].
In addition, they can also manage other types of re-
sources. Most of the operation-oriented methods this
paper introduces record code changes in a unit of a syn-
tax element. In such methods, we can determine what
element was changed without parsing. However, they
impose additional work for supporting other languages.
(5) Dependency on IDE

A revision history can hold code changes regardless
of whether they were performed on an IDE. All the
operation-oriented methods in this paper record on their
target IDEs and do not record changes performed out-
side of the IDEs. Moreover, they cannot be used in other
IDEs as is.
(6) Necessity for protecting privacy

Since operation history often includes privacy-
sensitive information, we need to be careful in disclos-
ing history data. Such information includes, for in-
stance, a conversion history in kanji conversion soft-
ware and pasting unintended characters due to a mis-
take?. Hayashi et al. claimed the necessity of prepro-
cessing prior to disclosing such data [83]. Vakilian et al.
and Negara et al. mentioned the difficulty in assembling
research participants due to privacy issues [39, 71].

4 Methods for recording opera-
tions

To tackle problems in revision history and prece-
dent methods for recording operation history, record-
ing methods have been proposed, as shown in Table 1.
Each recording method collects different information
based on its base IDE and main purpose of applications.
This section presents the background of each record-
ing method and what types of information it can record.
Each subsection presents one recording method. Since
EclipsEye and ChEOPSJ are respectively ported ver-
sions of SpyWare and ChEOPS to work on Eclipse,

2Based on the authors’ experiences.

they are presented in the same subsections of the re-
spective base tools.

4.1 SpyWare

Robbes et al. developed SpyWare, a tool for recording
developers’ source code edits performed on the Squeak
IDE [50, 51, 53].

Version control systems record only source code
snapshots at developers’ commits and do not hold
changes performed between the commits. Thus, re-
search on software evolution has been severely limited.
Moreover, IDEs are not equipped with software evolu-
tion analysis tools. Hence, they are separated from ac-
tual programming activities. Robbes et al. claimed that
collecting precise evolution data is necessary for effec-
tive software evolution research.

A main characteristic of change-based software evo-
Iution propounded by Robbes et al. is that a program
change is treated as a first-class entity, that is, it can be
(dynamically) generated in runtime and assigned to the
value of an argument, return value, or variable.

Recording changes is performed by hooking the
IDE’s change notifications. A change is represented
as an atomic change (finest operation) or more high-
level operation (e.g., refactoring, development session).
Each atomic change is recorded as an addition, deletion,
or move of a node or subtree of the AST.

Sharon developed an operation history recording tool
called EclipsEye by applying the method of Spy-
Ware into Java program development on Eclipse [63].
EclipsEye records automated refactorings (renaming
and moving) and additions, deletions and modifications
of syntax elements, such as packages, import state-
ments, classes, methods, and fields. Operation history
data are output by Java object serialization.

4.2 ChEOPS

Ebraert et al. developed ChEOPS (Change- and
Evolution-Oriented Programming Support), a tool en-
abling to record operation history on VisualWorks
Smalltalk IDE [7, 10].

Most Smalltalk IDEs involve a mechanism for keep-
ing snapshots in change files after every source code
change. VisualWorks contains a tool called Change
List, which is a more advanced mechanism treating
fine-grained changes. After each change is performed,
the tool generates a Smalltalk object from the change
and records it. The change is recorded in a change

Table 1: Methods for recording operations.

Unit of change Base IDE Target language
SpyWare [51, 53] syntax element Squeak Smalltalk
EclipsEye [63] syntax element Eclipse Java
ChEOPS [7, 10] syntax element VisualWorks Smalltalk
ChEOPSJ [66]*! syntax element Eclipse Java
OperationRecorder [44, 76]%2 text Eclipse Java
Syde [20]*3 syntax element Eclipse Java
Fluorite [74]*4 text Eclipse Java
CodingTracker [39, 42]*° syntax element Eclipse Java

1 Available at http://win.ua.ac.be/~gsoeten/other/cheopsj/.
Available at http://www.fse.cs.ritsumei.ac. jp/~takayuki/operec.html.

The authors checked that the tool actually works.

3 Available at http://www.inf.usi.ch/phd/hattori/syde/.

Source code is included in the available jar file.

4 Available at http://www.cs.cmu.edu/~fluorite/. The authors checked that the tool actually works.

Source code is also available at GitHub.

5 Available at http://codingtracker.web.engr.illinois.edu/. The authors checked that the tool actually works.

Source code is also available at GitHub.

file, which is mainly used for restoration after an IDE
crash. By using Change List, we can view and reorder
a change list and delete and reapply its changes. Ebraert
et al. pointed out the following four defects regarding
the tool.

1. The granularity level of changes is restricted. For
example, a change for an attribute is lost, whereas
a change for a class or a method is recorded.

2. Definitions of change objects are inconsistent.
3. It cannot record high-level changes.

4. Investigating changes is difficult due to the above
three factors.

They implemented ChEOPS to compensate for the
above defects. ChEOPS treats a change as a first-
class entity. It models changes in accordance with a
meta-model of object-oriented design, which is based
on FAMIX [69] extended for Smalltalk. It can record
any addition, deletion, and modification of a pack-
age, class, method, attribute, or variable as an atomic
change, i.e., the finest unit of a change. Atomic changes
can be grouped as a more abstract unit called a com-
posite change. A developer can freely define such an
abstract change. Moreover, a pre-condition and post-
condition can be specified to it so that a relationship be-
tween changes can be represented. For example, we can
declare that addition of a method can be performed to

only an existing class. This can prevent inconsistency;
adding a method to a class before the class is created.
Furthermore, declaring an intensional change is also
supported. Generally, an operation that affects multiple
parts of source code, such as renaming, should be rep-
resented as multiple sub-changes. Such a sub-change
is called an extensional change. An intensional change
can comprehensively represent the change based on its
characteristics (e.g., “changing every part referring the
variable”).

Soetens et al. developed ChEOPSJ by applying the
approach of ChEOPS to Java [66]. It enables the
change-based programming of ChEOPS in the context
of Java programs. Similar to ChEOPS, it generates a
FAMIX-based change model of a Java program when
editing it. ChEOPSJ automatically records every ad-
dition, deletion, and modification of a package, class,
field, and method. However, statement-level changes,
such as adding a method call and local variable, are not
automatically recorded. We have to manually generate
the differences to investigate such changes.

4.3 OperationRecorder

OperationRecorder [44, 76] is an Eclipse plug-in that
records history of every edit performed on Java source
code, launching a function via a menu item, and so on.

In software maintenance, it is important to under-
stand not only the latest source code snapshot but also
past changes. Most traditional research used revision

history for understanding changes. However, changes
under multiple intentions are mixed. Therefore, individ-
ual changes cannot be obtained. To solve this problem,
OperationRecorder, a tool for recording every change
performed between revisions, was developed.

OperationRecorder obtains code changes from
Eclipse’s undo history. Hence, it records just tex-
tual changes, having no concern with whether the
code is compilable. Therefore, we can restore a non-
compilable source code snapshot with operation his-
tory of OperationRecorder. Moreover, comments and
white spaces that are not included in general ASTs can
be also restored. On the other hand, we cannot de-
termine what syntax element the recorded operation is
performed for by only seeing recorded data. For this, a
method for mapping an edit and an AST syntax element
with the offset value of the edit was also proposed [44].

Though earlier versions [44] of OperationRecorder
stored operation history into a MySQL database, recent
versions output data into XML files [45]. It can record
not only edits but also file operations (open, save, close,
activation), cut, copy, paste, and invoking menu func-
tions provided by Eclipse. In addition, a source code
snapshot is recorded when a file operation was per-
formed if needed.

44 Syde

Hattori et al. extended change-based software evolu-
tion propounded by Robbes et al. and proposed record-
ing and using changes in collaborative development
by multiple developers. Moreover, they implemented
Syde, which records operation history in Java develop-
ment on Eclipse [20].

In traditional approaches of collaborative develop-
ment, multiple developers concurrently change source
code that was checked-out from a VCS. In such a sit-
uation, if multiple developers change the same part or
multiple parts that have a relationship with each other
(e.g., caller and callee of a method, parent class and its
child), the program threatens to behave in an unintended
manner. Therefore, changes have to be properly merged
when they are committed in development with a VCS.
However, developers actually tend to hesitate to edit and
commit to avoid merging [19, 22]. Since existing tools
supporting developers’ collaboration (e.g., Jazz*, Col-
labVS*, TUKAN [62]) treat changes on a file basis,

3http://jazz.net/
4http://research.microsoft.com/en-us/
projects/collabvs/

information derived from the program’s model is lost.
There is a tool that transfers change data in real time so
that it can alleviate the merge problem [60]. However,
it has several problems, such as that the unit of conflict
detection is coarse.

Syde can immediately transfer changes on the IDE
to other developers. Thus, it can improve developers’
awareness [5] regarding changes in collaborative de-
velopment. Syde is a client-server application. The
client is implemented as an Eclipse plug-in. The client
sends change history of when the project was built to
the server. The change history includes the addition,
deletion, and move of a syntax element or AST sub-
tree. The server saves the data sent from clients and
broadcasts the data to active clients.

4.5 Fluorite

Fluorite [74] is a plug-in that can record various events
(operations’ occurrences) on Eclipse. Its characteristics
include focusing on how developers are using the IDE.

It is important to know how features of programming
languages and tools on IDEs are used to evaluate and
improve them. Main data sources available for it are
categorized as follows. The first is a direct interview
with a developer. However, the answer sometimes lacks
reliability. The second is video recording of the devel-
opment. However, its analysis is time-consuming and
error-prone. The third is mining from VCS reposito-
ries. However, we cannot determine what operations
were performed between revisions from repository data.
Moreover, interaction data recorded using several inter-
action recording tools (e.g., Mylyn [29]) lack detailed
information.

Fluorite was extended Practically Macro® in terms
of recording file open and stability. Fluorite can record
an edit (insertion, deletion, and replacement), cursor
move, text selection, search, execution (debug and run),
file operation (open and activation), and content assist
(code completion and quick fix). Developers can leave
annotations within the operation history. The tool can
record not only what kind of operation occurred but also
its details, such as the target words of text search and re-
placement.

Shttp://sourceforge.net/projects/
practicalmacro/

4.6 CodingTracker

CodingTracker can record various operations per-
formed on Eclipse by replacing plug-ins included in
standard distributions of Eclipse [39, 42].

Version control systems are used by a large number
of developers. A large quantity of development history
of open source software development is available to the
public. Thus, researchers have been using source code
snapshots stored in VCSs as the main data of source
code evolution. Negara et al. claimed that precedent
studies based on VCS data are dangerous in terms of
the following three viewpoints.

The first is derived from the fact that history data are
incomplete. The same code may be changed multiple
times in a single transaction (changes between com-
mits). Hence, a part of history is not committed and
does not remain in the history data. This is represented
as a shadowing, or a change is shadowed.

The second is derived from the fact that history data
are imprecise. Multiple changes whose intentions are
different to the same element may occur in a single
transaction. This is called an overlap. For example,
when a refactored program element is fixed due to an-
other reason, intentions of the change become obscure.
Thus, they are difficult to estimate from revision history.

The third is derived from the fact that the relation-
ships between code changes and developers’ behaviors
are unclear. In traditional VCSs, the places of changed
code can be traced. However, they do not record devel-
opers’ behaviors before and after the changes. There-
fore, it is impossible to answer questions, such as
whether a test or refactoring was performed.

To promote research with precise understanding of
source code evolution, history data without the above
three problems are required. Negara et al. developed
CodingTracker to collect such data. CodingTracker
can record (1) an edit operation and its undo and redo,
(2) editing, creating, updating, saving, and closing a
file, (3) opening, saving, and closing a compare editor,
(4) execution, undo, redo, and completion of an auto-
mated refactoring, (5) creating, copying, moving, delet-
ing, and externally modifying a resource, (6) check-in
and check-out on CVS/Subversion, (7) starting and end-
ing of JUnit testing, and (8) changes in IDE options, and
so on. Moreover, the tool identifies the target syntax el-
ement of the change by using the change’s offset value
indicating where the change was performed. In partic-
ular, it calculates an offset value indicating the changed
place based on performed insertions and deletions and

glues them together. The changed region is presented
by the offset values of the glued text edits and its length.
By comparing the calculated region and region of each
element on the AST that Eclipse JDT creates, the cor-
responding element can be identified.

To be exact, refactoring executions are recorded us-
ing a tool called CodingSpectator. However, this pa-
per lumps CodingTracker and CodingSpectator to-
gether as CodingTracker.

4.7 Other recording methods

There have been several studies with implementation
of operation recording tools for investigating operation
history and improving IDE tools, though their main fo-
cus is not proposing recording tools.

For instance, Kim et al. created a tool that records op-
erations performed on the Eclipse Java editor [30, 31].
Moreover, they implemented a replayer that enables us
to manually replay recorded operations. Using the re-
player, they investigated how copy and paste are per-
formed in software development and what intentions
underlie them. Their tool records fine-grained opera-
tion history including code edits in contrast to the tools
mentioned in Section 6.

S Application methods of opera-
tion history

This section presents application methods of operation
history. Table 2 lists these methods. The names of the
recording tools in the table indicate that each applica-
tion depends on the corresponding recording tool. The
authors classified the application methods in terms of
instantaneousness of using operation history, support-
ing method, and supporting object, explained as fol-
lows.

Instantaneousness
This indicates whether operation history is used in-
stantly or after they are accumulated.

[I] Instant
A form of development support that instantly
uses developers’ operation data in the de-
velopment session once the operations have
been detected.

[A] Accumulated
A form of development support by accu-

mulating past operation data and processing
them collectively with mining techniques etc.

Supporting method
This indicates how operation history is applied to
development support.

[P] Operation processing
A method for altering the operations’ form
or generate a more abstract presentation of
the operations. Filtering and grouping oper-
ations are included in this category.

[R] Operation replaying
A method for restoring past source code by
replaying operations.

[A] Operation analysis
A method for extracting operation history’s
characteristics by analyzing them.

[V] Visualization
A method for visualizing operation history.

[C] Change conflict detection
A method for detecting change conflicts
among developers with operations recorded
in a multiple-developer project.

Supporting object
This indicates what task the method supports in
software development.

[Co] Supporting comprehension
To support comprehension regarding source
code and/or code changes.

[Ch] Supporting change

To support code change directly (e.g., apply-
ing past changes to other development con-
texts).

[T] Tool improvement

To improve tools on an IDE to support edit-
ing, testing, and/or other development activi-
ties with operation history. Analyzing opera-
tions for the purpose is also included.

[P] Process improvement

To clarify and alleviate the problem of the de-
velopment process with past operations. A
method focused on development stagnation
is included.

[CD] Collaborative development

To support collaboration in a multiple-
developer project. This category includes de-

tecting change conflicts in an early stage of

development to reduce the burden of merg-
ing.
[E] Investigation of software evolution [78]
To clarify how software evolution occurs. A
method in this category is not focused on di-
rectly supporting development but elucidat-
ing the evolution phenomenon.

Note that the classification in Table 2 is not for en-
compassing the supporting methods and objects. More-
over, several items in the supporting method and sup-
porting object partially overlap with each other. For ex-
ample, regarding supporting method, a method of “vi-
sualization” performs “operation processing” to extract
visualization targets. Methods specialized in compre-
hension and changing are respectively classified into
“supporting comprehension” and “supporting change”,
even if they are based on “tool improvement”. This
classification helps to grasp the tendency of the pro-
posed application methods. For example, most applica-
tion methods are aimed at supporting comprehension,
whereas their supporting methods are varied, such as
operation processing, replaying, and analysis. In addi-
tion, methods aimed at tool improvement are classified
into: (1) improving existing approaches by analyzing
operation history and existing problems of tool use and
(2) appending a novel tool, such as a code restore tool,
to an IDE.

5.1 Understanding source code and code
changes

Robbes et al. provided various tools that use operation
history recorded using SpyWare [56]. The tools in-
clude a metric graph that presents transitions of metric
values with operation history and a change matrix that
comprehensibly presents when and where changes were
performed.

Robbes et al. proposed the concept of development
session [54]. A development session is a period of
time which is obtained by dividing a single transac-
tion in a VCS. Each development session is classified
into several types, such as decoration (the finest oper-
ations, including modifying a method body), painting
(adding a method), and restoration (refactoring). The
classification is based on the session’s corresponding
task estimated from the involved operations. They also
proposed a tool for visualizing development sessions,
which helps in understanding developers’ tasks.

Table 2: Application methods of operation history.

Summary Instantaneous- Supporting Supporting
ness method object
SpyWare
Various tools based on SpyWare [56] [A] [V], etc. [Co], etc.
Identifying and classifying development sessions [54] [A] [P] [Co]
Example-based program transformation [55] [A] [P], [R] [Ch]
Evaluating and improving code completion [57] [1] [A] [T]
Evaluating and improving change prediction [59] [A] [A] [T]
Detecting logical couplings [58] [A] [A] [Co]
EclipsEye
Detecting development stagnation and support [1] [1] [A] [P]
ChEOPS
Change-based FOP [6, 11] [A] [P], [V] [Co], [Ch]
Change-based FOP (intensional change) [8] [A] [P] [Ch]
Change-based FOP (FODA diagram) [9] [A] [P] [Co]
ChEOPSJ
Test case selection [66, 67] [A] [A] [T]
Reconstruction of floss-refactorings [68] [A] [P] [Co]
OperationRecorder
Supporting divided commit by grouping operations [84] [A] [P] [Co]
Supporting understanding history by grouping operations [32, 79] [A] [P] [Co]
Filtering and grouping operations [80] [A] [P] [Co]
Analyzing repetitive code completion [47] [A] [A] [T]
Associating development intentions, history refactoring [23, 24] [1] [P] [Co]
Operation replayer, highlight plug-in [46, 77] [A] [R], [V] [Co]
Operation history slicing [38] [A] [R], [P] [Co]
Operation history replayer, stagnation detection [45] [A] [R], [V] [P]
Syde
Change notification, visualization [20, 34] 1] [C], [V] [CD], [Co]
Supporting collaborative development with change notifications [15, 16] [1] [C] [CD]
Refining code ownership [19, 21] [A] [A] [CD], [Co]
Understanding evolution by operation history replay [17, 18, 22] [A] [R] [CD], [Co]
Supporting team awareness by visualization [33] (1] [C], [V] [CD], [Co]
Fluorite
Analyzing backtracking [72] [A] [A] [T]
Azurite (time-line view, editor extension) [73] (1] [V], [R] [T], [Co]
CodingTracker
Problems of using revision history [42] [A] [A] [E]
Investigation of automated refactorings [70] [A] [A] [T]
Comparative experiment on manual and automated refactorings [40] [A] [A] [T]
CodeSkimmer (time line view, replaying operation) [65] 1] [V], [R] [Co]
Change pattern detection [41] [A] [A] [Co]

Legend

Instantaneousness: [I]: Instant [A]: Accumulated

Supporting method: [P]: Operation processing [R]: Operation replaying [A]: Operation analysis [V]: Visualization

[C]: Change conflict detection

Supporting object: [Co]: Supporting comprehension [Ch]: Supporting change [T]: Tool improvement [P]: Process improvement

[CD]: Collaborative development [E]: Investigation of software evolution

Robbes et al. [58] also proposed logical coupling
measures based on operation history recorded using
SpyWare. A logical coupling means a combination of
parts of code that are often edited in the same trans-
action. Thus, it indicates implicit relationships among
program elements. They concluded that using operation
history of SpyWare can improve measuring couplings
with less data than those of traditional approaches based
on software configuration management (SCM).

Ebraert et al. proposed change-based feature oriented
programming (CFOP), so they applied operation history

to FOP [6, 11]. The characteristics of CFOP include
treating a feature as a set of first-class changes. In an
evaluation experiment, they showed that an extension
of an existing graph generation framework enables the
visual check of the validity of feature compositions and
improvement in features’ reusability.

Ebraert et al. proposed feature oriented design analy-
sis (FODA) diagram [9], which presents the design of a
feature-oriented program. In a FODA diagram, individ-
ual changes are grouped in a feature that can be incre-
mentally abstracted. The dependency among features

is presented as a link. By using this diagram, incon-
sistency between implementation (individual changes)
and its design can be detected.

Soetens et al. proposed a method for reconstructing
floss-refactorings using operation history recorded by
ChEOPSJ [68]. A floss-refactoring is performed in the
midst of other changes, such as adding a function. Thus,
it is entangled with other kinds of edits. Reconstruct-
ing floss-refactorings from the differences in snapshots
stored in VCSs is difficult. The method presents de-
pendencies among code edits (insertions and deletions)
and types of program entities (class and method) in a
graph of a change pattern. Then, to reconstruct refac-
torings, it evaluates the correspondence between the
graph and pre-defined graphs of change patterns corre-
sponding to supported refactorings. Their paper showed
that reconstructing refactorings is possible by apply-
ing their method to move-method and rename-method
refactorings. It also showed the superiority of using
fine-grained history data by comparing the method and
RefFinder [49], which reconstructs refactorings with
differences between snapshots.

Kitsu et al. proposed a method for associating oper-
ations recorded using OperationRecorder to program
changes (e.g., adding, removing, and moving a field or
method, renaming a method, and changing a method
body) [79]. They also proposed a method for aggregat-
ing individual changes based on temporal distance and
spatial distance between program changes [32]. The
case studies showed that using the method contributed
to understanding changes.

Kuwabara et al. proposed a method for making
operation history recorded using OperationRecorder
coarser grained by filtering, merging, and grouping
operations to improve efficiency of replaying opera-
tions [80]. Their preliminary experiment showed how
the number of replay units changed with their method.

Hayashi et al. proposed a method for supporting de-
velopers to commit their changes into revision history
in a proper unit [24]. Committing changes to VCSs in a
proper granularity is recommended in software config-
uration management. However, there are many cases of
violating the policy in actual development [26]. Their
method records operations with OperationRecorder
and allows developers to annotate the operations. Then,
the operation history is divided into sub-histories. Each
of them corresponds to each intention. Thus, the
method allows us to commit changes that are separated
by intentions. Moreover, they summed up such modifi-
cations to edit history as edit history refactorings [23].

10

Annotating edits has to be performed manually. How-
ever, annotating based on several features, such as the
program entity and time of the edit, is automated [84].

Omori et al. proposed a tool called OperationRe-
player, which replays edits recorded using Opera-
tionRecorder [46, 77]. OperationReplayer provides
a time-line bar for grasping operations. By implement-
ing a plug-in, users can flexibly customize the visualiza-
tion of the time-line bar and analyze operation history.
They showed three cases; emphasizing operations per-
formed in the specific method, emphasizing comment-
out operations, and showing transitions of source code
length [77].

Maruyama et al. proposed a method and a tool
for slicing history data to improve the efficiency of
replaying operation history recorded using Opera-
tionRecorder [38]. In understanding a specific pro-
gram element (e.g., method or field), replaying edits
performed out of the element is unnecessary. Their
method constructs an edit operation graph, which
presents the correspondences between edit operations
and program elements based on offset values in the code
where the operation was performed. By identifying a
set of reachable vertices in the graph, we can replay
only edit operations within the specific program ele-
ment.

Simmons proposed an replayer for operation history
recorded using CodingTracker [65]. The characteris-
tics of this tool include time-line visualization and em-
phasizing operations related to selected code.

Negara et al. tried to detect code change patterns
with history data collected using CodingTracker [41].
Several precedent studies identified refactoring-specific
code change patterns using change history data directly
collected from IDEs [13, 14]. However, such meth-
ods only identify patterns that conform to pre-defined
ones. Whereas, by applying data mining techniques,
the method of Negara et al. can detect unknown change
patterns without pre-defined templates. In the method,
a code change pattern is captured by pairs of operation
kinds (e.g., add or change) and AST node types. They
are the target items of mining. Then, by presenting
an item by a bag (not set), the method allows transac-
tions overlap. Finally, based on the mining from history
data of CodingTracker, they succeeded in detecting 10
change patterns. The usability of several change pat-
terns were shown by an experiment with developers.

5.2 Supporting code changes

Robbes et al. proposed a method for supporting source
code transformation with operation history recorded us-
ing SpyWare. Small-scale changes can be done by ed-
its or refactorings. Large-scale changes require dedi-
cated program transformation languages. This method
is focused on medium-scale transformations that are not
well supported with traditional methods. In the method,
developers perform a change as an example. A change
that can be applied in other contexts is generated by us-
ing the example. The applicability of the method was
shown by several examples of transformations.

Ebraert et al. proposed a formal language to present
intensional changes in CFOP [8]. With this language,
changes across multiple modules can be grouped in a
change set.

5.3 Analyzing and improving use of IDE
Tools

Robbes claimed operation history is effective for eval-
uating the performance of recommendation systems
(e.g., change prediction tool and code completion tool)
on IDEs [52]. Robbes et al. proposed a benchmark
for evaluating change prediction methods and evaluated
the performance of existing change prediction methods
with the benchmark [59]. The results show that using
recent changes is the best approach in predicting classes
and methods to be changed.

Robbes et al. proposed a method for improving code
completion with operation history [57]. They also pro-
posed a method for evaluating performance of code
completion based on change data and a user interface
of code completion. Furthermore, they proposed a
benchmark-based evaluation of code completion per-
formance. Based on their evaluation, they showed that
their proposed code completion method drastically im-
proved existing code completion methods.

To improve code completion tools, Omori et al. con-
ducted an experiment with operation history and re-
ported that code completion operations inserting the
same text tend to be repeated in a short time [47].
They analyzed repetitive code completion with Opera-
tionReplayer and gave five examples of repetitive code
completion.

Soetens et al. proposed a method for selecting
test cases with operation history collected using
ChEOPSJ [66, 67]. When software becomes large, the
size of the test suite for automated unit testing also be-

11

comes large. Thus, executing all tests after every fine-
grained change is not realistic. When a developer edits
source code, changed program elements are extracted
with ChEOPSJ. Then, tests regarding the elements and
other elements depending on them are executed. There-
fore, the execution time of automated testing can be re-
duced.

Yoon et al. investigated developers’ backtracking on
source code, especially when and how backtracking oc-
curs, with output data of Fluorite [72]. They showed
problems regarding backtracking, such as remaining de-
bug code that should be deleted and time-consuming
restoration of source code deleted by a mistake.

Yoon et al. proposed Azurite®, which uses output
data of Fluorite [73]. This tool not only visualizes
change history on time-line bars but also provides var-
ious functions, such as selective undo on the Eclipse
source code editor, filtering and searching on the his-
tory, and showing differences between past and current
snapshots. They showed that the tool helps developers
answer questions regarding code change history (e.g.,
how and when the code was changed and what changes
were performed recently).

Negara et al. conducted a comparative experiment of
manual and automated refactorings with operation his-
tory of CodingTracker [40]. They presented a method
for inferencing automated refactorings with operation
history. The experimental results on the ratio of per-
formed manual refactorings to automated ones, their
size, and required time were also presented.

Vakilian et al. investigated how developers are using
automated refactoring tools on Eclipse [70]. They cate-
gorized developers’ usage into use, disuse, and misuse
and discussed each one. For example, need, awareness,
and naming were presented as factors of disuse.

5.4 Supporting distributed and collabora-
tive development

Syde [20] provides a tool for recording operations and
its applications, which help in collaborative software
development with developers distributed geographi-
cally. One of the purposes with Syde is improving
team awareness by notifying changes to the developers
as the change happens. Syde includes the following
plug-ins’.

Shttp://www.cs.cmu.edu/~azurite/
TInspector plug-in is excluded since it is a recording tool.

1. Scamp: It extends Eclipse’s Package Explorer
view to help the checking of changed files. It also
shows a graph representing recent changes in each
class.

Conflict Plug-in: It notifies change conflicts to de-
velopers. It can also semi-automatically resolve
conflicts.

Lanza et al. applied Syde to actual collaborative de-
velopment [34]. As a result, duplicated work among
developers can be avoided and the number of conflicts
on merging can be reduced.

Based on operation history of Syde, Hattori et
al. [19] presented an experiment regarding code own-
ership. In their study, the owner of a source file was
deemed as a developer who performed the greater num-
ber of changes on it. In contrast, in the traditional CVS,
the owner of a file is a person who changed the greater
number of lines of code in it. After an evaluation, they
concluded that the ownership classification with their
proposed method is more accurate than the traditional
one. In a large development project, identifying code
ownership is particularly important since not all devel-
opers are familiar with every code. Hattori et al. [21]
extended the above study, given the forgetting curve. As
anovel finding, no optimal value for a memory strength
parameter exists.

Hattori introduced a mechanism for detecting code
change conflicts in real time and alerting based on the
check-in status of the code [16]. Hattori et al. [15] ana-
lyzed the effect of preemptive detection of code change
conflicts. The results include: (1) developers can com-
municate earlier to decide what operations should be
checked-in first, and (2) developers can break their
commits into small ones to reduce the complexity of
merging.

Moreover, Hattori et al. implemented a tool called
Replay, which can replay recorded operations and
showed that replaying is useful for understanding soft-
ware evolution [17, 18, 22]. Since the number of op-
erations within the history data is generally massive,
the tool provides functions of grouping and filtering
operations based on change time, developer, and arti-
fact (package, class, method). They showed that the
tool is helpful for reducing the time for answering soft-
ware evolution questions and the precision in the an-
swers can also be improved, compared to understand-
ing evolution with Subversion [17]. The later study [18]
extended the experiment and included research partici-

12

pants’ comments on tool improvement and details of the
experiment.

Lanza et al. proposed a tool called Manhattan for
supporting a developer notify other developers’ work
with visualization based on a city metaphor [33]. Col-
lecting code changes and detecting conflicts are con-
ducted with Syde. In a preliminary evaluation in which
participants used the tool, several positive comments
were obtained (e.g., the tool is intuitive in understand-
ing code, change conflicts were informed before they
become too painful to fix).

5.5 Analyzing development stagnation pe-
riods

Omori et al. proposed a method for identifying devel-
opment terms with a comparatively large number of
deleted characters so that stagnation periods are shown
on time line bars of OperationReplayer [45]. Exam-
ples of stagnation periods actually detected include trial
and errors in debugging, extracting a class, and tack-
ling an error. By precisely analyzing such stagnation
periods, recurrences of similar stagnations can be pre-
vented.

Carter et al. created a tool to identify stagnations
(having difficulty) in development [1]. Their work
adopted the extended EclipsEye and their recording
tool for Visual Studio. They also proposed a method
of identifying stagnation periods with operation kinds
and showed that the resultant accuracy was 100%. As
a result, it has become possible for developers to help
each other sooner and prevent deterioration in develop-
ment efficiency.

5.6 Investigation of software evolution

Negara et al. investigated five research questions in
terms of the reliability of revision history data [42]. The
research questions and experimental results are as fol-
lows:

Q1 How much code evolution data is not stored in
VCS?: 37% of code changes are shadowed and are not
stored in VCSs.

Q2 How much do developers intersperse refactorings
and edits in the same commit?: 46% of refactored pro-
gram entities are also edited in the same commit.

Q3 How frequently do developers fix failing tests by
changing the test itself?: 40% of test fixes involve
changes to the tests.

Q4 How many changes are committed to VCS without
being tested?: 24% of changes committed to VCSs are
untested.

Q5 What is the temporal and spacial locality of
changes?: To answer this question, they employed
three time windows spanning 15, 30, and 60 min-
utes. That is, for a base change operation in a method,
they counted how many changes were performed in the
method within 7.5, 15, and 30 minutes before and after
the base one, respectively. By summing the results for
all code changes of each method, the total number of
code changes in each method was obtained. Moreover,
by adding up the sums, the number of all code changes
was obtained. Based on these calculations, they calcu-
lated the frequency of each method. As a result, 85%
of changes to a method during an hour interval are clus-
tered within 15 minutes on average.

6 Other methods for recording in-
teraction history

This section presents history recording tools that are not
this paper’s main survey target.

The following tools can store copies of source code
as a history: Moraine [85], AJC Active Backup?,
File Hamster’, Save Dirty Editor Eclipse Plugin'®.
Tani et al. proposed an operation-history-recording tool
called plog [81, 82]. This tool records transitions of
source code snapshots. It also records the execution
environment and execution results when the program
is executed. By using these tools, we can trace source
code changes in shorter intervals than using snapshots
stored in VCSs. However, the operation-oriented meth-
ods this paper introduced can treat much finer-grained
operations.

The following methods treat only interaction history
not detailed source code changes.

Hackystat [28] monitors developers’ activities on
software development tools by embedding a sensor in
them. It provides sensors to Eclipse, Emacs, Ant, JU-
nit, CVS, Jira, and so on. It gathers various information
including the time when a file was accessed and when
a build or commit was performed. Moreover, it pro-
vides transitions of several metric values, such as file

8http://www.ajcsoft.com/active-backup.htm
http://www.filehamster.com/
Ohttp://sourceforge.net/projects/save
dirtyeditor/

13

size. With these types of information, it supports deci-
sion making, particularly in software project manage-
ment.

Mylyn (previously called Mylar)!' [29] is a task and
application lifecycle management tool that is installed
on Eclipse by default. Mylyn records selected and/or
edited files and used functions on Eclipse. With such
history, it calculates a degree-of-interest (DOI) value,
which indicates how much a task and resource (e.g.,
source file) are related. Based on this value, it can fil-
ter, except for items related to the current task on the
Package Explorer view.

Eclipse Usage Data Collector (UDC)'? is a tool
for collecting interaction history on Eclipse. Eclipse
UDC collects information on a performed function, its
time, and basic user properties (e.g., running operat-
ing system). Users can send the recorded data to the
Eclipse UDC server. Some of the collected data are
publicly available.

Empirical Project Monitor (EPM) [43, 75] is a sys-
tem for improving the software process by collecting
software development data. It consists of four func-
tions: data collection, format translation, data store, and
data analysis/visualization. Thus, it can collect time-
series data, such as the number of lines of code, that of
posted mails, and that of issues, in development sup-
port systems (e.g., configuration management system
and mailing list).

PROM [64] is a tool to automatically collect met-
ric data on software development. It is supposed to be
mainly used for personal software process (PSP) [27].
PROM uses a plug-in architecture so that each plug-in
installed by a developer (client) actually collects data.
The collected data are sent to the PROM server via the
plug-ins server of each client. With this tool, we can
avoid error-prone and time-consuming manual data col-
lection. In addition, developers’ tasks are not prohibited
since the data collection is fully automated.

Recording tools dedicated to refactoring recording
include CatchUp! [25] and MolhadoRef [2, 3, 4].
Moreover, recent implementation of Eclipse provides
Refactoring History, which preserves the history of ex-
ecuted automated refactorings.

Uhttp://wiki.eclipse.org/Mylyn
2http://wiki.eclipse.org/UDC
The authors checked that Eclipse UDC was not available and the
webpage was deprecated in March 2014.

7 Discussions on operation history

This section describes discussions on the format, lever-
aging, and public use of operation history to the best of
our knowledge.

7.1 Format of operation history

Each recording method this paper introduced adopted a
different policy of the output format. For example, Op-
erationRecorder emphasizes the readability of XML
files. Hence, we can understand the order of code
changes in a source file by reading the output file from
top to bottom. Meanwhile, Fluorite records a code
change and input command (what key was pressed) in
different elements since it emphasizes the keeping of an
operation’s trigger that caused the code change. There-
fore, understanding the output file is comparatively dif-
ficult for humans.

The amount of recorded data depends on the record-
ing method and development situation. Usually, the size
of history data is larger than that of revision history. For
reference, in a sample case with OperationRecorder,
the last snapshot consisted of 7,569 lines (approxi-
mately 205 kilobytes) of code in total. The size of
the operation history recorded during its implementa-
tion was approximately 24.8 gigabytes (121-fold).

Some studies tried to reduce the size of output files.
For example, the data format of CodingTracker is con-
sidered more lightweight than XML-based ones, though
it is not appropriate for human reading. Another exam-
ple is Fluorite. It can abbreviate repeated elements with
repeat-attribute. EclipsEye can automatically com-
press the output files into a zip file [63].

7.2 Leveraging operation history

When we consider an application of operation history,
what kinds of operations can be recorded by the base
recording method is an important factor. The recorded
operations may be incomplete if the application was not
considered in implementation of the recording method.
For example, in analyzing testing, the target or results
of the testing may not be recorded within the history,
even if a running event itself was recorded. In addition,
the ease of using operation history is also an important
factor in implementation of application methods. Since
SpyWare treats a program change as a first-class en-
tity, it can be easily accessed from other applications
running on Squeak. Since EclipsEye outputs operation

14

history with serialization, they can be read with stan-
dard APIs of Java. OperationRecorder provides APIs
to easily read and write operation history. Its APIs also
include those for transformation of operation history,
such as filtering based on operation kinds.

7.3 Public use of operation history

By allowing operation history recorded in an experi-
ment be for public use, problems with software devel-
opment can be shared. The data can be used also as a
benchmark. Robbes et al. proposed using operation his-
tory recorded by SpyWare as a benchmark [57]. How-
ever, to the best of our knowledge, there is no case in
which operation history is actually opened to the pub-
lic. The authors consider the reason as a privacy and
low-demand issues, as mentioned in Section 3.

8 Conclusion

This paper presented a survey on methods for recording
operation history on IDEs, including edit history, and
their application methods, supposed to be referred by
future software evolution studies. With the presented
methods, most problems of traditional approaches with
revision history can be solved.

Revision history inevitably arises when source code
is stored (committed) to a repository. Hence, it is appro-
priate or necessary for the history to be shared among
development team members. Therefore, collecting such
revision history data from an actual software develop-
ment project is comparatively easy. This is a major fac-
tor that revision history has been used in many stud-
ies. However, as mentioned in Section 3, understanding
changes based on revision history is limited in its accu-
racy.

Meanwhile, operation-oriented methods enable more
accurate analysis by allowing the granularity of code
changes to be finer. However, in some cases, finer his-
tory data should not be shared or are not desirable for
sharing due to privacy issues. Whether the data should
be shared among team members in actual development
is controversial. Thus, developers’ cooperation and re-
ceptivity are required at this point.

Since recording methods have become available for
actual use only recently, there are still a few cases
of their applications to real software projects. Hence,
the number of implemented operation-oriented applica-
tions is still limited. Moreover, when developers use

operation-based support tools, they are forced to change
their traditional development style. As more developers
recognize the effectiveness of operation-oriented meth-
ods in future, recording methods and their applications
will become more enriched. Furthermore, software de-
velopment techniques based on them will be gradually
established.

If an operation-oriented tool is introduced in actual
software development or data collection in a study, ease
of installation and absence of bugs are important. How-
ever, no tools are fully satisfactory at this point. For ex-
ample, though CodingTracker can record various kinds
of operations by replacing standard plug-ins included
in Eclipse, it works on limited versions of Eclipse due
to dependency restrictions among plug-ins. Moreover,
when the authors tried several recording tools, problems
in recording accuracy were observed (i.e., some opera-
tions were missing). To implement operation record-
ing tools, deep knowledge of the base IDE’s implemen-
tation is required. Moreover, the updating along with
upgrades of the IDE is also required. Thus, it is very
difficult to accurately record operation history. It is re-
quired to establish a system to obtain accurate history
with easy installation and access to operations.

As mentioned in this paper, the target programming
languages of the current recording methods are only
Java and Smalltalk. The number of target IDEs is also
limited. To introduce operation-oriented methods to
many software development projects, supporting more
languages and IDE:s is necessary. In addition, by devis-
ing a common representation for operation history, de-
pendency between recording and application methods
may be cut off. Such basic improvements are required
for the future.

Acknowledgments

This work was partially supported by MEXT/JISPS
KAKENHI Grant Numbers 24500050, 26730042, and
23700030.

References

[1] Carter, J. and Dewan, P.: Design, Implementation,
and Evaluation of an Approach for Determining
when Programmers Are Having Difficulty, Pro-
ceedings of the 16th ACM International Confer-

15

(2]

(3]

(4]

(5]

(6]

(7]

(9]

ence on Supporting Group Work, 2010, pp. 215-
224.

Dig, D.: Automated Upgrading of Component-
based Applications, PhD Thesis, University of
Illinois, 2007.

Dig, D., Manzoor, K., Johnson, R., and Nguyen,
T. N.: Refactoring-Aware Configuration Manage-
ment for Object-Oriented Programs, Proceedings
of the 29th International Conference on Software
Engineering, 2007, pp. 427-436.

Dig, D., Manzoor, K., Johnson, R., and Nguyen,
T. N.: Effective Software Merging in the
Presence of Object-Oriented Refactorings, IEEE
Transactions on Software Engineering, Vol. 34,
No. 3(2008), pp. 321-335.

Dourish, P. and Bellotti, V.: Awareness and
Coordination in Shared Workspaces, Proceed-
ings of the 1992 ACM Conference on Computer-
supported Cooperative Work, 1992, pp. 107-114.

Ebraert, P: First-class Change Objects for
Feature-oriented Programming, Proceedings of
the 15th Working Conference on Reverse Engi-
neering, 2008, pp. 319-322.

Ebraert, P.: A Bottom-up Approach to Program
Variation, PhD Thesis, Vrije Universiteit Brussel,
2009.

Ebraert, P., D’Hondt, T., Molderez, T., and
Janssens, D.: Intensional Changes: Modularizing
Crosscutting Features, Proceedings of the 2010
ACM Symposium on Applied Computing, 2010,
pp. 2176-2182.

Ebraert, P., Soetens, Q. D., and Janssens, D.:
Change-based FODA Diagrams: Bridging the
Gap Between Feature-oriented Design and Imple-
mentation, Proceedings of the 2011 ACM Sym-
posium on Applied Computing, 2011, pp. 1345—
1352.

Ebraert, P., Vallejos, J., Costanza, P., Van Paess-
chen, E., and D’Hondt, T.: Change-oriented Soft-
ware Engineering, Proceedings of the 2007 In-
ternational Conference on Dynamic Languages,
2007, pp. 3-24.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Ebraert, P, Vallejos, J., and Vandewoude, Y.:
Flexible Features: Making Feature Modules More
Reusable, Proceedings of the 2009 ACM sympo-
sium on Applied Computing, 2009, pp. 1963—
1970.

Fluri, B., Wiirsch, M., Pinzger, M., and Gall, H.:
Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction, /IEEE
Transactions on Software Engineering, Vol. 33,
No. 11(2007), pp. 725-743.

Foster, S. R., Griswold, W. G., and Lerner, S.:
WitchDoctor: IDE Support for Real-time Auto-
completion of Refactorings, Proceedings of the
34th International Conference on Software Engi-
neering, 2012, pp. 222-232.

Ge, X., DuBose, Q. L., and Murphy-Hill, E.: Rec-
onciling Manual and Automatic Refactoring, Pro-
ceedings of the 34th International Conference on
Software Engineering, 2012, pp. 211-221.

Hattori, L., Lanza, M., and D’Ambros, M.:
A Qualitative User Study on Preemptive Con-
flict Detection, Proceedings of the 7th Interna-

tional Conference on Global Software Engineer-
ing, 2012, pp. 159-163.

Hattori, L.: Enhancing Collaboration of Multi-
developer Projects with Synchronous Changes,
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering — Volume 2,
2010, pp. 377-380.

Hattori, L., D’Ambros, M., Lanza, M., and Lungu,
M.: Software Evolution Comprehension: Replay
to the Rescue, Proceedings of the 19th Interna-
tional Conference on Program Comprehension,

2011, pp. 161-170.

Hattori, L., D’Ambros, M., Lanza, M., and Lungu,
M.: Answering Software Evolution Questions:
An Empirical Evaluation, Information and Soft-
ware Technology, Vol. 55, No. 4(2013), pp. 755—
775.

Hattori, L. and Lanza, M.: Mining the History of
Synchronous Changes to Refine Code Ownership,
Proceedings of the 6th IEEE Working Conference
on Mining Software Repositories, 2009, pp. 141-
150.

16

[20]

Hattori, L. and Lanza, M.: Syde: a Tool for Col-
laborative Software Development, Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering — Volume 2, 2010, pp. 235—
238.

Hattori, L., Lanza, M., and Robbes, R.: Refin-
ing Code Ownership with Synchronous Changes,
Empirical Software Engineering, Vol. 17, No. 4-
5(2012), pp. 467-499.

Hattori, L., Lungu, M., and Lanza, M.: Replaying
Past Changes in Multi-developer Projects, Pro-
ceedings of the Joint ERCIM Workshop on Soft-
ware Evolution and International Workshop on
Principles of Software Evolution, 2010, pp. 13-
22.

Hayashi, S., Omori, T., Zenmyo, T., Maruyama,
K., and Saeki, M.: Refactoring Edit History
of Source Code, Proceedings of the 28th Inter-
national IEEE Conference on Software Mainte-
nance, 2012, pp. 617-620.

Hayashi, S. and Saeki, M.: Recording Finer-
grained Software Evolution with IDE: an
Annotation-based Approach, Proceedings of the
Joint ERCIM Workshop on Software Evolution
and International Workshop on Principles of
Software Evolution, 2010, pp. 8-12.

Henkel, J. and Diwan, A.: CatchUp!: Capturing
and Replaying Refactorings to Support API Evo-
lution, Proceedings of the 27th International Con-
ference on Software Engineering, 2005, pp. 274—
283.

Herzig, K. and Zeller, A.: The Impact of Tangled
Code Changes, Proceedings of the 10th Work-
ing Conference on Mining Software Repositories,
2013, pp. 121-130.

Humphrey, W. S.: A Discipline for Software Engi-
neering, Addison-Wesley Professional, 1995.

Johnson, P. M., Kou, H., Paulding, M., Zhang, Q.,
Kagawa, A., and Yamashita, T.: Improving Soft-
ware Development Management Through Soft-
ware Project Telemetry, IEEE Software, Vol. 22,
No. 4(2005), pp. 76-85.

Kersten, M. and Murphy, G. C.: Mylar: A Degree-
of-interest Model for IDEs, Proceedings of the 4th

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

International Conference on Aspect-oriented Soft-
ware Development, 2005, pp. 159-168.

Kim, M.: Analyzing and Inferring the Structure of
Code Changes, PhD Thesis, University of Wash-
ington, 2008.

Kim, M., Bergman, L., Lau, T., and Notkin, D.:
An Ethnographic Study of Copy and Paste Pro-
gramming Practices in OOPL, Proceedings of the
2004 International Symposium on Empirical Soft-
ware Engineering, 2004, pp. 83-92.

Kitsu, E., Omori, T., and Maruyama, K.: Detect-
ing Program Changes from Edit History of Source
Code, Proceedings of the 20th Asia-Pacific Soft-
ware Engineering Conference, 2013, pp. 299-
306.

Lanza, M., D’ Ambros, M., Bacchelli, A., Hattori,
L., and Rigotti, F.: Manhattan: Supporting Real-
time Visual Team Activity Awareness, Proceed-
ings of the 21st International Conference on Pro-
gram Comprehension, 2013, pp. 207-210.

Lanza, M., Hattori, L., and Guzzi, A.: Supporting
Collaboration Awareness with Real-time Visual-
ization of Development Activity, Proceedings of
the 14th European Conference on Software Main-
tenance and Reengineering, 2010, pp. 207-216.

Lehman, M. M.: Programs, Life Cycles, and Laws
of Software Evolution, Proceedings of IEEE,
Vol. 68, 1980, pp. 1060-1076.

Maalej, W., Fritz, T., and Robbes, R.: Collecting
and Processing Interaction Data for Recommen-
dation Systems, Springer, 2014.

Madhavji, N. H., Fernandez-Ramil, J., and Perry,
D.(eds.): Software Evolution and Feedback - The-
ory and Practice, Wiley, 2006.

Maruyama, K., Kitsu, E., Omori, T., and Hayashi,
S.: Slicing and Replaying Code Change His-
tory, Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software, 2012,
pp. 246-249.

Negara, S.: Towards a Change-oriented Program-
ming Environment, PhD Thesis, University of Illi-
nois, 2013.

17

[40]

[42]

[47]

Negara, S., Chen, N., Vakilian, M., Johnson, R. E.,
and Dig, D.: A Comparative Study of Manual and
Automated Refactorings, Proceedings of the 27th

European Conference on Object-Oriented Pro-
gramming, 2013, pp. 552-576.

Negara, S., Codoban, M., Dig, D., and Johnson,
R. E.: Mining Fine-Grained Code Changes to De-
tect Unknown Change Patterns, Technical report,
University of Illinois, 2013.

Negara, S., Vakilian, M., Chen, N., Johnson, R. E.,
and Dig, D.: Is It Dangerous to Use Version Con-
trol Histories to Study Source Code Evolution?,
Proceedings of the 26th European Conference on
Object-Oriented Programming, 2012, pp. 79—
103.

Ohira, M., Yokomori, R., Sakai, M., Matsumoto,
K., Inoue, K., and Torii, K.: Empirical Project
Monitor: A Tool for Mining Multiple Project
Data, Proceedings of the Ist International Work-
shop on Mining Software Repositories, 2004,
pp. 42-46.

Omori, T. and Maruyama, K.: A Change-aware
Development Environment by Recording Editing
Operations of Source Code, Proceedings of the
2008 International Working Conference on Min-
ing Software Repositories, 2008, pp. 31-34.

Omori, T. and Maruyama, K.: Identifying Stagna-
tion Periods in Software Evolution by Replaying
Editing Operations, Proceedings of the 16th Asia-
Pacific Software Engineering Conference, 2009,
pp. 389-396.

Omori, T. and Maruyama, K.: An Editing-
operation Replayer with Highlights Supporting
Investigation of Program Modifications, Proceed-
ings of the 12th International Workshop on Prin-
ciples of Software Evolution and the 7th Annual
ERCIM Workshop on Software Evolution, 2011,
pp. 101-105.

Omori, T. and Maruyama, K.: A Study on Repet-
itiveness of Code Completion Operations, Pro-
ceedings of the 28th International Conference on
Software Maintenance, 2012, pp. 584-587.

Pfleeger, S. L.: Software Engineering (2nd Edi-
tion), Pearson Education, 2001.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Rachatasumrit, N. and Kim, M.: An Empirical
Investigation into the Impact of Refactoring on
Regression Testing, Proceedings of the 28th In-
ternational Conference on Software Maintenance,
2012, pp. 357-366.

Robbes, R.: Mining a Change-based Software
Repository, Proceedings of the 4th International
Workshop on Mining Software Repositories, 2007,

pp- 15.

Robbes, R.: Of Change and Software, PhD Thesis,
University of Lugano, 2008.

Robbes, R.: On the Evaluation of Recommender
Systems with Recorded Interactions, Proceed-
ings of the 2009 ICSE Workshop on Search-
Driven Development-Users, Infrastructure, Tools
and Evaluation, 2009, pp. 45-48.

Robbes, R. and Lanza, M.: A Change-based Ap-
proach to Software Evolution, Electronic Notes
in Theoretical Computer Science, Vol. 166(2007),
pp- 93-109.

Robbes, R. and Lanza, M.: Characterizing and
Understanding Development Sessions, Proceed-
ings of the 15th IEEE International Conference on
Program Comprehension, 2007, pp. 155-166.

Robbes, R. and Lanza, M.: Example-Based Pro-
gram Transformation, Proceedings of the 11th In-
ternational Conference on Model Driven Engi-
neering Languages and Systems, 2008, pp. 174—
188.

Robbes, R. and Lanza, M.: SpyWare: A Change-
aware Development Toolset, Proceedings of the
30th International Conference on Software Engi-
neering, 2008, pp. 847-850.

Robbes, R. and Lanza, M.: Improving Code Com-
pletion with Program History, Automated Soft-
ware Engineering, Vol. 17(2010), pp. 181-212.

Robbes, R., Pollet, D., and Lanza, M.: Logical
Coupling Based on Fine-grained Change Informa-
tion, Proceedings of the 15th Working Conference
on Reverse Engineering, 2008, pp. 42—46.

Robbes, R., Pollet, D., and Lanza, M.: Replaying
IDE Interactions to Evaluate and Improve Change
Prediction Approaches, Proceedings of the 7th

18

[66]

IEEE International Working Conference on Min-
ing Software Repositories, 2010, pp. 161-170.

Sarma, A., Redmiles, D., and van der Hoek, A.:
Palantir: Early Detection of Development Con-
flicts Arising from Parallel Code Changes, IEEE
Transactions on Software Engineering, Vol. 38,
No. 4(2012), pp. 889-908.

Sarma, A.: A Survey of Collaborative Tools in
Software Development, Technical report, Institute
for Software Research, University of California,
Irvine, 2005.

Schiimmer, T. and Schiimmer, J.: Support for
Distributed Teams in Extreme Programming,
Addison-Wesley Longman Publishing Co., Inc.,
2001, pp. 355-377.

Sharon, Y.: EclipsEye Spying on Eclipse, Under-
graduate thesis, University of Lugano, 2007.

Sillitti, A., Janes, A., Succi, G., and Vernazza, T.:
Collecting, Integrating and Analyzing Software
Metrics and Personal Software Process Data, Pro-
ceedings of the 29th Euromicro Conference, 2003,
pp. 336-342.

Simmons, C.: CodeSkimmer: A Novel Visualiza-
tion Tool for Capturing, Replaying, and Under-
standing Fine-grained Change in Software, Mas-
ter’s thesis, University of Illinois, 2013.

Soetens, Q. and Demeyer, S.: ChEOPSJ: Change-
Based Test Optimization, Proceedings of the 16th
European Conference on Software Maintenance
and Reengineering, 2012, pp. 535-538.

Soetens, Q., Demeyer, S., and Zaidman, A.:
Change-Based Test Selection in the Presence of
Developer Tests, Proceedings of the 17th Euro-
pean Conference on Software Maintenance and
Reengineering, 2013, pp. 101-110.

Soetens, Q., Perez, J., and Demeyer, S.: An Initial
Investigation into Change-Based Reconstruction
of Floss-Refactorings, Proceedings of the 29th
IEEE International Conference on Software Main-
tenance, 2013, pp. 384-387.

Tichelaar, S., Ducasse, S., and Demeyer, S.:
FAMIX: Exchange Experiences with CDIF and
XML, Proceedings of the Workshop on Standard
Exchange Format 2000, 2000.

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Vakilian, M., Chen, N., Negara, S., Rajkumar,
B. A., Bailey, B. P, and Johnson, R. E.: Use, Dis-
use, and Misuse of Automated Refactorings, Pro-
ceedings of the 34th International Conference on
Software Engineering, 2012, pp. 233-243.

Vakilian, M., Chen, N., Negara, S., Rajkumar,
B. A., Moghaddam, R. Z., and Johnson, R. E.: The
Need for Richer Refactoring Usage Data, Pro-
ceedings of the 3rd ACM SIGPLAN Workshop on
Evaluation and Usability of Programming Lan-
guages and Tools, 2011, pp. 31-38.

Yoon, Y. and Myers, B.: An Exploratory Study
of Backtracking Strategies Used by Developers,
Proceedings of the 5th International Workshop on
Cooperative and Human Aspects of Software En-
gineering, 2012, pp. 138-144.

Yoon, Y., Myers, B., and Koo, S.: Visualization of
Fine-Grained Code Change History, Proceedings
of the IEEE Symposium on Visual Languages and
Human-Centric Computing, 2013, pp. 119-126.

Yoon, Y. and Myers, B. A.: Capturing and An-
alyzing Low-level Events from the Code Editor,
Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Lan-
guages and Tools, 2011, pp. 25-30.

Ohira, M., Yokomori, R., Sakai, M., Iwamura,
S., Ono, E., Shinkai, T., and Yokogawa, T.: De-
signing a System for Real-Time Software Devel-
opment Management, IEICE Transactions on In-
formation and Syatems, Vol. 88, No. 2(2005),
pp- 228-239. (In Japanese)

Omori, T. and Maruyama, K.: A Method
for Extracting Source Code Modifications from
Recorded Editing Operations, Journal of Informa-
tion Processing, Vol. 49, No. 7(2008), pp. 2349-
2359. (In Japanese)

Omori, T., Kuwabara, H., and Maruyama, K.: An
Editing-operation Replayer to Ease Investigation
of Program Modifications, Computer Software,
Vol. 28, No. 4(2011), pp. 371-376. (In Japanese)

Omori, T., Maruyama, K., Hayashi, S., and
Sawada, A.: A Literature Review on Software
Evolution Research, Computer Software, Vol. 29,
No. 3(2012), pp. 3-28. (In Japanese)

19

[79]

[85]

Kitsu, E., Omori, T., and Maruyama, K.: De-
tecting Program Changes based on the Edit His-
tory of Source Code, Computer Software, Vol. 29,
No. 2(2012), pp. 168—173. (In Japanese)

Kuwabara, H. and Omori, T.: Coarse-Grained
Frame for Replaying Editing Operation History,
Computer Software, Vol. 30, No. 4(2013), pp. 61—
66. (In Japanese)

Tani, T., Kaneko, N., Yamamoto, S., and Agusa,
K.: plog: Programming Activity Recording Sys-
tem Aiming at Extraction of Programming Expe-
riences, JSSST Symposium on Foundations of Soft-
ware Engineering (FOSE2007), 2007, pp. 161-
166. (In Japanese)

Tani, T., Kobayashi, T., Yamamoto, S., and Agusa,
K.: Retrieving Experiences of Solving Problems
during Programming with Stack Trace Informa-
tion, JSSST Symposium on Foundations of Soft-
ware Engineering (FOSE2008), 2008, pp. 99-
104. (In Japanese)

Hayashi, S., Omori, T., Zenmyo, T., Maruyama,
K., and Saeki, M.: A Technique for Refactor-
ing Editing Histories of Source Code, JSSST Sym-
posium on Foundations of Software Engineering
(FOSE2011), 2011, pp. 61-70. (In Japanese)

Hoshino, D., Hayashi, S., and Saeki, M.: Auto-
mated Grouping of Editing Operations of Source
Code, Computer Software, Vol. 31, No. 3(2014),
pp- 277-283. (In Japanese)

Yamamoto, T., Matsushita, M., and Inoue, K.:
Accumulative File System Moraine and A Met-
rics Environment MAME., Computer Software,
Vol. 18, No. 3(2001), pp. 250-260. (In Japanese)

Omori, T., Hayashi, S., and Maruyama, K.: A
Survey on Methods of Recording Fine-grained
Operations on Integrated Development Environ-
ments and their Applications, Computer Software,
Vol. 32, No. 1(2015), pp. 60-80. (In Japanese)

